Semi-Supervised Adversarial Variational Autoencoder

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Autoencoder for Semi-Supervised Text Classification

Although semi-supervised variational autoencoder (SemiVAE) works in image classification task, it fails in text classification task if using vanilla LSTM as its decoder. From a perspective of reinforcement learning, it is verified that the decoder’s capability to distinguish between different categorical labels is essential. Therefore, Semi-supervised Sequential Variational Autoencoder (SSVAE) ...

متن کامل

Adversarial Symmetric Variational Autoencoder

A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: (i) from observed data fed through the encoder to yield codes, and (ii) from latent codes drawn from a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and late...

متن کامل

Semi-Supervised Recursive Autoencoder

In this project, we implement the semi-supervised Recursive Autoencoders (RAE), and achieve the result comparable with result in [1] on the Movie Review Polarity dataset1. We achieve 76.08% accuracy, which is slightly lower than [1] ’s result 76.8%, with less vector length. Experiments show that the model can learn sentiment and build reasonable structure from sentence.We find longer word vecto...

متن کامل

Sentiment Analysis Using Semi-Supervised Recursive Autoencoder

The aim of this project was to use semi-supervised recursive autoencoder provided by [2] and classify the english phrases from movie reviews into five sentiment classes; very positive, positive, neutral, negative and very negative by softmax regression classifier.

متن کامل

Symmetric Variational Autoencoder and Connections to Adversarial Learning

A new form of the variational autoencoder (VAE) is proposed, based on the symmetric KullbackLeibler divergence. It is demonstrated that learning of the resulting symmetric VAE (sVAE) has close connections to previously developed adversarial-learning methods. This relationship helps unify the previously distinct techniques of VAE and adversarially learning, and provides insights that allow us to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning and Knowledge Extraction

سال: 2020

ISSN: 2504-4990

DOI: 10.3390/make2030020